Безопасность. Настройка. Интернет. Восстановление. Установка

Что такое SCADA система в телемеханике? Что такое SCADA Scada определение.

Большинство систем автоматизации функционирует с участием человека. Взаимодействие между человеком и системой автоматизации называют человеко-машинным интерфейсом (ЧМИ), а в мире это звучит как - Human Machine Interface , сокращенно HMI. На сегодняшний день, самым распространенным программным комплексом, реализующим человеко-машинный интерфейс, являются SCADA системы. SCADA – это акроним от выражения Supervisory Control And Data Acquisition , что дословно переводится на русский язык, как: диспетчерское управление и сбор данных. Но стоит отметить, что существующие SCADA системы помимо сбора данных и диспетчерского управления реализуют множество различных функций, далеко выходящих за рамки упомянутого выше определения.

Функции SCADA систем подразделяются на несколько групп:

  • Адаптация SCADA системы под решение стоящих задач;
  • Диспетчеризация объектов управления;
  • Автоматизация процесса управления;
  • Архивация истории протекающих процессов;
  • Работа с функциями безопасности;
  • Работа с общесистемными функциями.

Несмотря на наличие множества функций, которые выполняют SCADA системы, основным отличием SCADA от других систем является наличие пользовательского интерфейса. Если изъять пользовательский интерфейс, то все указанные выше функции совпадут с функциями, которые выполняют средства программирования промышленных контроллеров (ПЛК), и управление станет полностью автоматизированным в противовес диспетчерскому.

От качества принимаемых диспетчером решений зависит не только качество производимой продукции, но порой и человеческая жизнь. Именно поэтому комфортабельность рабочего места, простота и интуитивная понятность рабочего интерфейса, создание подсказок и блокирование допускаемых оператором ошибок – вот наиболее приоритетные свойства SCADA систем, дальнейшее развитие которых осуществляется в сторону большей эргономичности и улучшения экспертных подсистем.

Порой в комплектацию SCADA системы входят средства программирования контроллеров, однако подобные решения вызваны скорее коммерческим интересом, нежели напрямую связаны с основными функциями SCADA систем.

Основной функцией SCADA системы по праву считается создание человеко-машинного интерфейса (HMI ), т.е. SCADA система выступает сразу в двух ролях – в роли HMI и в роли инструмента его создания. Скорость проводимых разработок в значительной степени влияет на конкурентоспособность фирмы (которой в большинстве случаев является системный интегратор), внедряющей системы промышленной автоматизации (АСУТП), именно поэтому скорость разработки выступает в роли основного показателя с позиции системного интегратора качества SCADA системы. Процесс разработки SCADA систем включает в себя следующие операции:

  • Разработка графического интерфейса (графики, всплывающие окна, мнемосхемы, таблицы, элементы ввода команд оператором и прочее);
  • Процесс программирования и отладки алгоритмов работы системы промышленной автоматизации АСУТП. В большинстве SCADA систем отладку можно выполнить двумя вариантами – в режиме эмуляции оборудования или при подключенном оборудовании;
  • Произведение настройки систем промышленной коммуникации (модемов, промышленных сетей и коммуникационных контроллеров);
  • Процесс создания баз данных с дальнейшим подключением к ним SCADA системы.

Если рассматривать SCADA систему с точки зрения диспетчерского управления, то ей доступно выполнение следующих задач:

  • Осуществление взаимодействия с оператором (представление слуховой и визуальной информации, трансляция системе команд оператора);
  • Оказание помощи оператору в процессе выработки необходимого решения (выполнение функций экспертной системы);
  • Автоматическое сигнализирование об аварии и случившихся критических ситуациях (подсистема алармов);
  • Вывод на пульт оператора информации о состоянии процесса;
  • Ведение журнала событий;
  • Поиск и извлечение архивной информации, и предоставление её оператору в удобном для него варианте;
  • Создание отчетов (графики смены операторов, таблицы температур, перечень необходимых действий оператора в определенной ситуации и прочее);
  • Учет наработки технологического оборудования.

Большая часть имеющихся задач по автоматизации управления выполняется зачастую при помощи промышленного контроллера (ПЛК), но частично выполнение задач может быть возложено и на SCADA систему. Помимо всего прочего, многие небольшие системы управления могут вообще не иметь промышленного контроллера (ПЛК), поэтому промышленный компьютер, с установленной на него SCADA становится единственным средством управления процессом. В сфере автоматического управления (АСУТП) SCADA система, как правило, выполняет следующие функции:

  • ПИД регулирование;
  • Отслеживание последовательности выполнения операций в автоматизированной системе;
  • Автоматическая перенастройка алгоритмов работы АСУТП к изменившимся условиям протекания управляемого процесса;
  • Реализация автоматической блокировки исполнительных устройств во время выполнения ранее заданных алгоритмов.

Если знать предысторию объекта (процесса) управления, то можно значительно улучшить поведение системы в будущем, проанализировать и выявить причины возникновения ситуаций, связанных с безопасностью системы или появлением брака продукции, определить ошибки, сделанные оператором. Чтобы создать историю SCADA системой выполняются следующие операции:

  • Сбор различных входных данных и произведение их обработки (цифровая фильтрация, нормализация, интерполяция, масштабирование, сжатие и прочее);
  • Архивирование данных (действия оператора, файлы конфигурации, собранные и обработанные данные, электронные формы, отчеты, события, графики, алармы и т.д.);
  • Управление различными базами данных (архивные базы данных и базы данных реального времени).

После того, как SCADA системы стали применять в системах удаленного доступа посредством сети интернет, то резко повысилась уязвимость SCADA к противоправным действиям со стороны злоумышленников. Относиться с пренебрежением к данной проблеме нет возможности, поскольку это может привести к серьезным сбоям в функционировании различных промышленных и инфраструктурных объектов. Что чревато человеческими жизнями и столь немалым экономическим ущербом. В SCADA системах применяются следующие способы для повышения уровня безопасности их работы:

  • Осуществление разграничения уровней доступа к системе между различными категориями пользователей (оператор, программист, технолог и директор должны иметь различные уровни доступа к имеющейся в системе информации и к модифицированию настроек системы);
  • Организация защиты информации (шифрование данных, обеспечение максимальной надежности от уязвимостей протоколов передачи информации);
  • Проведение мер по обеспечению повышения безопасности оператора путем его отдаления от опасного процесса, которым он управляет (дистанционное управление или remote control ). Что важно, применение дистанционного управления является стандартным требованием Ростехнадзора и осуществляется посредством проводной сети, сети интернет, через радиоканал (радио или GSM -модем) и другие виды связи;
  • Применение специальных мер и методов защиты информации от атак злоумышленников;
  • Использование файерволов и прочих сетевых защит.

Учитывая то, что SCADA система, как правило, единственная программа, управляющая системой промышленной автоматизации (АСУТП), то при определенных условиях не неё может быть возложено выполнение некоторых общесистемных функций, таких как:

  • Осуществление необходимого взаимодействия между различными SCADA системами, или между SCADA системой и иными сторонними программами (базы данных, офисные приложения, программы для математических расчетов и другие);
  • Проведение диагностики аппаратуры, алгоритмов программ и каналов связи.

Основные тенденции в процессе развития программного обеспечения, используемого в средствах промышленной автоматизации – упрощение и облегчение процесса программирования, обеспечение полной открытости инструментальных средств. Конечная цель – осуществление потребителем возможности построения системы промышленной автоматизации, удовлетворяющей всем необходимым требованиям в максимально сжатые сроки.

После долгой неопределенности витавшей в средствах программирования SCADA систем и промышленных контроллеров (ПЛК) был принят общепризнанный стандарт на языки программирования МЭК 61131-3 (IEC 61131-3) и созданы на его основе инструментальные средства программирования, поддерживаемые компаниями, которые специализируются на создании программного обеспечения для АСУТП.

Значительный вклад в вопрос открытости систем автоматизации был внесен стандартом ОРС (OLE for Process Control ), что переводится как OLE для управления процессом, обеспечивший наличие широчайшего выбора аппаратного обеспечения, используемого системными интеграторами. Разработчики контроллерного оборудования получили, в свою очередь, от внедрения стандарта OPC расширение рынков сбыта. Стоит отметить, что данное аппаратное обеспечение совместимо с любыми стандартными SCADA системами.

Большинство систем автоматизации функционирует с участием человека (оператора, диспетчера). Интерфейс между человеком и системой называют человеко-машинным интерфейсом (ЧМИ), в зарубежной литературе - HMI (Human-Machinery Interface) или MMI (Man-Machinery Interface). В частном случае, когда ЧМИ предназначен для взаимодействия человека с автоматизированным технологическим процессом, его называют SCADA-системой (Supervisory Control And Data Acquisition). Этот термин переводится буквально как "диспетчерское управление и сбор данных", но на практике его трактуют гораздо шире, а современные SCADA-пакеты включают в себя широчайший набор функциональных возможностей, далеко выходящий за рамки сбора данных и диспетчерского управления.

9.4.1. Функции SCADA

Существующие в настоящее время SCADA-пакеты выполняют множество функций, которые можно разделить на несколько групп:

  • наcтройка SCADA на конкретную задачу (т. е. разработка программной части системы автоматизации);
  • диспетчерское управление;
  • автоматическое управление;
  • хранение истории процессов;
  • выполнение функций безопасности;
  • выполнение общесистемных функций.

Несмотря на множество функций, выполняемых SCADA, основным ее отличительным признаком является наличие интерфейса с пользователем. При отсутствии такого интерфейса перечисленные выше функции совпадают с функциями средств программирования контроллеров, а управление является автоматическим, в противоположность диспетчерскому.

Качество решений, принятых оператором (диспетчером), часто влияет не только на качество производимой продукции, но и на жизнь людей. Поэтому комфорт рабочего места, понятность интерфейса, наличие подсказок и блокировка явных ошибок оператора являются наиболее важными свойствами SCADA, а дальнейшее их развитие осуществляется в направлении улучшения эргономики и создания экспертных подсистем.

Иногда SCADA комплектуются средствами для программирования контроллеров, однако эта функция вызвана коммерческими соображениями и слабо связана с основным назначением SCADA.

В SCADA-пакетах используют понятие аларма и события. Событие - это изменение некоторых состояний в системе. Примерами событий могут быть включение перевалки зерна в элеваторе, завершение цикла периодического процесса обработки детали, окончание загрузки бункера, регистрация нового оператора и т. п. События не требуют срочного вмешательства оператора, а просто информируют его о состоянии системы.

В отличие от события, аларм (от английского "alarm" - "сигнал тревоги") представляет собой предупреждение о важном событии, в ответ на которое нужно срочно предпринять некоторые действия. У английского слова "аларм" имеется точный русский перевод - "сигнал тревоги" или "аварийный сигнал", однако термин "аларм" уже прочно вошел в лексикон промышленной автоматизации.

Примерами алармов может быть достижение критической температуры хранения зерна в элеваторе, после которого начинается его возгорание, достижение критического значение давления в автоклаве, после которого возможен разрыв оболочки, срабатывание датчика открытия охраняемой двери, превышение допустимого уровня загазованности в котельной и т.п.

В связи с тем, что алармы требует принятия решения, их делят на подтвержденные и неподтвержденные . Подтвержденным называется аларм, в ответ на который оператор ввел команду подтверждения. До этого момента аларм считается неподтвержденным.

Алармы делятся на дискретные и аналоговые . Дискретные сигнализируют об изменении дискретной переменной, аналоговые алармы появляются, когда непрерывная переменная входит в заранее заданный интервал своих значений. В качестве примера на рис. 9.13 показано деление всего интервала изменения переменной на интервалы "Норма", "Внимание" (предаварийное состояние) и "Авария":

Каждая критическая граница на рис. имеет зону нечувствительности (мертвую зону), которая нужна для того, чтобы после снятия состояния аларма переменная не могла вернуться в него вследствие случайных выбросов в системе (шумов). Границы зон на рис. 9.13 могут изменяться с течением времени.

Аналогичные границы могут быть назначены для скорости изменения переменной (для производной функции ), которая определяется как угол наклона касательной к кривой .

Методика выдачи алармов должна быть надежной. В частности, всплывающие окна с сообщениями алармов должны быть всегда поверх остальных окон, алармы могут дублироваться звуком и светом. Поскольку алармов в системе может быть много, им назначают разные приоритеты, разные громкости и тоны звукового сигнала и т. п.

Разработка человеко-машинного интерфейса

Одной из основных функций SCADA является разработка человеко-машинного интерфейса, т.е. SCADA одновременно является и ЧМИ, и инструментом для его создания. Быстрота разработки существенно влияет на рентабельность фирмы, выполняющей работу по внедрению системы автоматизации, поэтому скорость разработки является основным показателем качества SCADA с точки зрения системного интегратора. В процесс разработки входят следующие операции:

  • создание графического интерфейса (мнемосхем, графиков, таблиц, всплывающих окон, элементов для ввода команд оператора и т д.);
  • программирование и отладка алгоритмов работы системы автоматизации. Многие SCADA позволяют выполнять отладку системы как в режиме эмуляции оборудования, так и с подключенным оборудованием;
  • настройка системы коммуникации (сетей, модемов, коммуникационные контроллеров и т п.);
  • создание баз данных и подключение к ним SCADA.

SCADA как система диспетчерского управления

Как система диспетчерского управления SCADA может выполнять следующие задачи:

  • взаимодействие с оператором (выдача визуальной и слуховой информации, передача в систему команд оператора);
  • помощь оператору в принятии решений (функции экспертной системы);
  • автоматическая сигнализация об авариях и критических ситуациях;
  • выдача информационных сообщений на пульт оператора;
  • ведение журнала событий в системе;
  • извлечение информации из архива и представление ее оператору в удобном для восприятия виде;
  • подготовка отчетов (например, распечатка таблицы температур, графиков смены операторов, перечня действий оператора);
  • учет наработки технологического оборудования.

SCADA как часть системы автоматического управления

Основная часть задач автоматического управления выполняется, как правило, с помощью ПЛК, однако часть задач может возлагаться на SCADA. Кроме того, во многих небольших системах управления ПЛК могут вообще отсутствовать и тогда компьютер с установленной SCADA является единственным средством управления. SCADA обычно выполняет следующие задачи автоматического управления:

  • автоматическое регулирование;
  • управление последовательностью операций в системе автоматизации;
  • адаптация к изменению условий протекания технологического процесса;
  • автоматическая блокировка исполнительных устройств при выполнении заранее заданных условий.

Хранение истории процесса

Знание предыстории управляемого процесса позволяет улучшить будущее поведение системы, проанализировать причины возникновения опасных ситуаций или брака продукции, выявить ошибки оператора. Для создания истории система выполняет следующие операции:

  • сбор данных и их обработка (цифровая фильтрация, интерполяция, сжатие, нормализация, масштабирование и т. д.);
  • архивирование данных (действий оператора, собранных и обработанных данных, событий, алармов, графиков, экранных форм, файлов конфигурации, отчетов и т. п.);
  • управление базами данных (реального времени и архивных).

Безопасность SCADA

Применение SCADA в системах удаленного доступа через интернет резко повысило уязвимость SCADA к действиям враждебных лиц. Пренебрежение этой проблемой может приводить, например, к отказу в работе сетей электроснабжения, жизнеобеспечения, связи, отказу морских маяков, дорожных светофоров, к заражению воды неочищенными стоками и т.п. Возможны и более тяжелые последствия с человеческими жертвами или большим экономическим ущербом. Для повышения безопасности SCADA используют следующие методы:

  • разграничение доступа к системе между разными категориями пользователей (у сменного оператора, технолога, программиста и директора должны быть разные права доступа к информации и к модификации настроек системы);
  • защиту информации (путем шифрования информации и обеспечения секретности протоколов связи);
  • обеспечение безопасности оператора благодаря его отдалению от опасного управляемого процесса (дистанционное управление). Дистанционный контроль и дистанционное управление являются типовыми требованиями Ростехнадзора и выполняются по проводной сети, радиоканалу (через GSM- или радиомодем), через интернет и т.д.;
  • специальные методы защиты от кибер-атак;
  • применение межсетевых экранов.

Общесистемные функции

Поскольку SCADA обычно является единственной программой для управления системой автоматизации, на нее могут возлагаться также некоторые общесистемные функции:

  • осуществление взаимодействий между несколькими SCADA, между SCADA и другими программами (MS Office, базой данных, MATLAB и т.п.);
  • диагностика аппаратуры, каналов связи и программного обеспечения.

9.4.2. Свойства SCADA

Анализ свойств различных SCADA позволяет выбирать систему, оптимальную для решения поставленной задачи. Все многообразие свойств SCADA-пакетов можно разбить на следующие группы:

  • инструментальные свойства;
  • эксплуатационные свойства;
  • свойства открытости;
  • экономическая эффективность.

Инструментальные свойства

К инструментальным относятся свойства SCADA, влияющие на эффективность работы системных интеграторов:

  • быстрота разработки проекта;
  • легкость освоения;
  • поддерживаемые средства коммуникации;
  • наличие функций для сложной обработки данных;
  • наличие языков МЭК 61131-3 и универсального алгоритмического языка типа Visual Basic;
  • степень открытости для разработчика (поддержка COM и ActiveX для подключения программных модулей пользователя, а также OPC, ODBC, OLE DB;
  • качество технической документации (полнота, ясность изложения, количество ошибок);
  • наличие режима эмуляции оборудования для отладки;
  • наличие внутренних графических редакторов, позволяющих отказаться от применения внешних редакторов типа CorelDraw или Photoshop; поддержка типовых графических форматов файлов;
  • качество технической поддержки (время реакции на вопросы пользователей, наличие "горячей линии" технической поддержки.

SCADA используют языки программирования МЭК 61131-3, ориентированные на технологов, которые дополняются функциями, специфическими для SCADA. Большинство SCADA имеют встроенный редактор и интерпретатор языка Visual Basic фирмы Microsoft.

Эксплуатационные свойства

Качество SCADA в процессе эксплуатации оценивается конечными пользователями и характеризуется следующим набором свойств:

  • робастность (нечувствительность к ошибкам пользователя, защищенность от вандалов и враждебных элементов, устойчивость к ошибкам в исходных данных);
  • надежность;
  • информационная защищенность;
  • наличие средств сохранения данных при нештатных ситуациях, отключениях питания и сбоях;
  • наличие автомата перезапуска системы при ее зависании или после прерывания питания;
  • поддержка резервирования SCADA (операторской станции, сетевых серверов, клиентских рабочих станций, резервное копирование данных);
  • поддержка переключения экранов с разной детализацией изображений; поддержка нескольких мониторов.

Степень открытости

Степень открытости очень сильно влияет на экономическую эффективность системы, однако это влияние носит случайный характер, поскольку зависит от степени использования свойств открытости в конкретном проекте.

Открытость для программирования пользователем SCADA обеспечивается возможностью подключения программных модулей, написанных пользователем или другими производителями. Это обычно достигается тем, что SCADA разрабатывается как контейнер для СОМ-объектов и ActiveX элементов. Совместимость с аппаратурой и базами данных других производителей достигается с помощью стандарта ОРС, применением интерфейса ODBC или OLE DB. Открытость системы программирования достигается поддержкой языков МЭК 61131-3.

Особенно интересно с точки зрения открытости применение веб-интерфейса, поскольку он обеспечивает доступ к SCADA с любого компьютера из любой точки мира, независимо от аппаратной платформы, типа канала связи, операционной системы и используемого веб-навигатора.

Экономическая эффективность

Экономическую эффективность SCADA можно определить как отношение экономического эффекта от ее внедрения к общей сумме затрат на внедрение и поддержание системы в работоспособном состоянии. На экономическую эффективность в конечном счете влияют практически все свойства SCADA, однако в первую очередь можно выделить следующие:

  • масштабируемость (возможность применения как для больших, так и для малых систем);
  • модульность. Модульность позволяет сделать заказную комплектацию системы в зависимости от поставленной задачи. Типовыми модулями могут быть, например, модуль ввода-вывода, модуль визуализации, модуль алармов, модуль трендов, модуль отчетов, модуль коммерческого учета энергоресурсов и др.;
  • стоимость обслуживания;
  • условия обновления версий;
  • надежность поставщика, наличие опыта практического применения;
  • стоимость обучения;
  • стоимость технической поддержки;
  • методы ценообразования.

Общим недостатком универсальных SCADA является их низкая экономическая эффективность при использовании для решения простых задач. Несмотря на то, что цена SCADA-пакетов существенно снижается при уменьшении количества доступных пользователю тегов и набора модулей, остается высокой цена технической поддержки. Также дорогой (трудоемкой) остается адаптация универсальной SCADA к конкретной задаче. Поэтому ряд фирм предлагают более узкоспециализированные, но достаточно простые в настройке микро-SCADA с сокращенной функциональностью.

9.4.3. Программное обеспечение

В настоящее время наиболее распространенными отечественными универсальными SCADA являются MasterSCADA (ИнСАТ, www.masterscada.ru), Trace Mode (AdAstrA Research Group, Ltd, www.adastra.ru), Круг-2000 (НПФ "КРУГ", www.krug2000.ru) и САРГОН (НВТ-Автоматика, nvt.msk.ru). Все системы удовлетворяют основным требованиям к SCADA, описанным выше, и успешно конкурируют с зарубежными аналогами. Ниже мы рассмотрим отличительные особенности двух наиболее известных пакетов: MasterSCADA и Trace Mode.

MasterSCADA

Система MasterSCADA фирмы ИнСАТ [Аблин ] предназначена для создания полномасштабных систем автоматизации в различных отраслях промышленности. Основной ее особенностью является объектный подход , использованный на уровне описания системы при ее настройке на конкретный объект автоматизации. Например, цех, участок, технологический блок и физическое устройство при создании проекта с помощью MasterSCADA рассматриваются как отдельные объекты. Для каждого объекта создается свое описание на технологическом языке программирования. Описание включает в себя свойства объекта и документы объекта. Свойствами могут быть период опроса, способ линеаризации датчика, диапазон входных сигналов. Документами объекта являются его изображение, мнемосхема, график изменения переменных и т. п. Любой документ в системе относится к некоторому объекту. Такой подход позволяет легко размножать один раз созданные объекты, что повышает скорость настройки SCADA на задачу пользователя.

К признакам объектного подхода относится также возможность наследования всех настроек от "родительских" объектов. Это означает, что в MasterSCADA нет необходимости вводить настройки для каждого типа объектов "с нуля". Можно использовать наследование этих настроек от родительского объекта, изменив в них только те параметры, которые отличают родителя от потомка.

Созданные объекты можно копировать с целью многократного использования. При копировании объекта сохраняются все связанные с ним документы и свойства. Связи с внешними источниками и приемниками данных восстанавливаются после копирования, если в системе имеются такие источники или свободные приемники данных (физические устройства). Это позволяет пополнять библиотеку объектов вновь созданными экземплярами и использовать объекты, созданные другими разработчиками.

Trace Mode

SCADA-система Trace Mode 6 фирмы AdAstrA состоит из инструментальной системы и набора исполнительных модулей. В состав Trace Mode 6 входят также средства управления бизнес-процессами производственного предприятия.

Для увеличения скорости разработки проекта пользователя применяется оригинальная технология автопостроения. Автоматически в SCADA могут быть построены:

  • источники данных ПЛК и модулей ввода-вывода по известной конфигурации;
  • каналы по источникам данных;
  • связи каналов из редактора аргументов;
  • связи контроллер-сервер и сервер-сервер;
  • SQL-запросы;
  • связи с OPC-сервером;
  • связь с ODBC.

Автопостроение позволяет снизить количество ошибок, допускаемых пользователем при ручном создании проекта.

В пятой версии Trace Mode инструментальная система представлена в виде отдельных компонентов, в 6-ой использована интегрированная среда разработки.

В систему Trace M ode 6 включены пять языков программирования – Techno SFC, Techno LD, Techno FBD, Techno ST, и Techno IL, которые являются расширениями соответствующих языков стандарта МЭК 61131-3.

9.5. Заключение к главе "Программное обеспечение"

Основными тенденциями развития программного обеспечения для средств автоматизации являются максимальное упрощение процесса программирования и обеспечение открытости инструментальных средств. Конечной целью является предоставление потребителю возможности построения качественной системы автоматизации в максимально короткий срок.

Долгий период неопределенности в средствах программирования ПЛК и SCADA пакетов завершился принятием общепризнанного стандарта МЭК 61131-3 и созданием на его основе инструментальных средств программирования, которые поддерживаются фирмами, специализирующимися на программном обеспечении.

Существенный вклад в открытость систем автоматизации внес стандарт OPC, обеспечивший системным интеграторам широчайший выбор аппаратного обеспечения, совместимого с любыми стандартными SCADA пакетами, а разработчикам контроллерного оборудования - расширение рынков сбыта.

Основные задачи, решаемые SCADA-системами

Операторский интерфейс, разработанный в SCADA

SCADA-системы решают следующие задачи:

  • Обмен данными с «устройствами связи с объектом», то есть с промышленными контроллерами и платами ввода/вывода) в реальном времени через драйверы.
  • Обработка информации в реальном времени.
  • Логическое управление.
  • Отображение информации на экране монитора в удобной и понятной для человека форме.
  • Ведение базы данных реального времени с технологической информацией.
  • Аварийная сигнализация и управление тревожными сообщениями.
  • Подготовка и генерирование отчетов о ходе технологического процесса.
  • Осуществление сетевого взаимодействия между SCADA ПК.
  • Обеспечение связи с внешними приложениями (СУБД , электронные таблицы , текстовые процессоры и т. д.). В системе управления предприятием такими приложениями чаще всего являются приложения, относимые к уровню MES .

SCADA-системы позволяют разрабатывать АСУ ТП в клиент-серверной или в распределённой архитектуре.

Основные компоненты SCADA

SCADA-система обычно содержит следующие подсистемы:

  • Драйверы или серверы ввода-вывода - программы, обеспечивающие связь SCADA с промышленными контроллерами , счётчиками , АЦП и другими устройствами ввода-вывода информации.
  • Система реального времени - программа, обеспечивающая обработку данных в пределах заданного временного цикла с учетом приоритетов.
  • Человеко-машинный интерфейс (HMI , англ. Human Machine Interface ) - инструмент, который представляет данные о ходе процесса человеку оператору, что позволяет оператору контролировать процесс и управлять им. Программа-редактор для разработки человеко-машинного интерфейса.
  • Система логического управления - программа, обеспечивающая исполнение пользовательских программ (скриптов) логического управления в SCADA-системе. Набор редакторов для их разработки.
  • База данных реального времени - программа, обеспечивающая сохранение истории процесса в режиме реального времени.
  • Система управления тревогами - программа, обеспечивающая автоматический контроль технологических событий, отнесение их к категории нормальных, предупреждающих или аварийных, а также обработку событий оператором или компьютером.
  • Генератор отчетов - программа, обеспечивающая создание пользовательских отчетов о технологических событиях. Набор редакторов для их разработки.
  • Внешние интерфейсы - стандартные интерфейсы обмена данными между SCADA и другими приложениями. Обычно OPC , DDE , ODBC , DLL и т. д.

Концепции систем

Термин SCADA обычно относится к централизованным системам контроля и управления всей системой, или комплексами систем, осуществляемого с участием человека. Большинство управляющих воздействий выполняется автоматически RTU или ПЛК . Непосредственное управление процессом обычно обеспечивается RTU или PLC, а SCADA управляет режимами работы. Например, PLC может управлять потоком охлаждающей воды внутри части производственного процесса, а SCADA система может позволить операторам изменять уста для потока, менять маршруты движения жидкости, заполнять те или иные ёмкости, а также следить за тревожными сообщениями (алармами ), такими как - потеря потока и высокая температура, которые должны быть отображены, записаны, и на которые оператор должен своевременно реагировать. Цикл управления с обратной связью проходит через RTU или ПЛК, в то время как SCADA система контролирует полное выполнение цикла.

Сбор данных начинается в RTU или на уровне PLC и включает - показания измерительного прибора. Далее данные собираются и форматируются таким способом, чтобы оператор диспетчерской, используя HMI мог принять контролирующие решения - корректировать или прервать стандартное управление средствами RTU/ПЛК. Данные могут также быть записаны в архив для построения трендов и другой аналитической обработки накопленных данных.

WebSCADA

Под термином WebSCADA , как правило, понимается реализация человеко-машинного интерфейса (HMI) SCADA-систем на основе web -технологий.

Это позволяет осуществлять контроль и управление SCADA-системой через стандартный браузер, выступающего в этом случае в роли тонкого клиента .

Архитектура таких систем включает в себя WebSCADA-сервер и клиентские терминалы - ПК, КПК или мобильные телефоны с Web-браузером. Подключение клиентов к WebSCADA-серверу через Internet /Intranet позволяет им взаимодействовать с прикладной задачей автоматизации как с простой web или WAP -страницей. Однако на данном этапе развития WebSCADA ещё не достигло уровня широкого промышленного внедрения, так как существуют сложности с защитой передаваемой информации. Кроме этого, реализация функций управления через незащищенные каналы связи противоречит соображениям безопасности любого промышленного объекта. В связи с этим, в большинстве случаев Web-интерфейсы используются в качестве удаленных клиентов для контроля и сбора данных.

Уязвимость

SCADA-системы могут быть уязвимы для хакерских атак, так, в 2010 году с использованием вируса Stuxnet была осуществлена атака на центрифуги для обогащения урана в Иране . Таким образом, для защиты информационных комплексов, содержащих SCADA-системы, требуется соблюдение общих требований информационной безопасности .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "SCADA" в других словарях:

    SCADA - is the abbreviation for Supervisory Control And Data Acquisition . It generally refers to an industrial control system: a computer system monitoring and controlling a process. The process can be industrial, infrastructure or facility based as… … Wikipedia

    SCADA - система диспетчерское управление и сбор данных ПО, предназначенное для поддержки средств автоматизации и построения систем промышленной автоматизации. SCADA (аббр. от англ. supervisory control and data acquisition,… … Справочник технического переводчика

    SCADA - Este artículo o sección sobre informática necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 10 de febrero de 2010. También puedes… … Wikipedia Español

    SCADA - Supervisory Control and Data Acquisition SCADA est l acronyme de Supervisory Control And Data Acquisition (commande et l acquisition de données de surveillance). L idée générale est celle d un système de télégestion à grande échelle réparti au… … Wikipédia en Français

    SCADA - Unter Überwachung, Steuerung, Datenerfassung (ÜSE), oft englisch Supervisory Control and Data Acquisition (SCADA), wird das Konzept zur Überwachung und Steuerung technischer Prozesse verstanden. Inhaltsverzeichnis 1 Konzept 2 Kommunikation 3… … Deutsch Wikipedia

    SCADA - Supervisory Control And Data Acquisition (Computing » General) Supervisory Control And Data Acquisition (Business » International Business) Supervisory Control And Data Acquisition (Computing » SMS) Supervisory Control And Data Acquisition… … Abbreviations dictionary

    SCADA - Supervisory Control And Data Acquisition … Acronyms

    scada - cascada … Dictionnaire des rimes

    scáda - m (n/ n) crown of head … Old to modern English dictionary

    SCADA - Supervisory Control And Data Acquisition … Acronyms von A bis Z

SCADA-системы предназначены для осуществления мониторинга и диспетчерского контроля большого числа удаленных объектов (от 1 до 10000 , иногда на расстоянии в тысячи километров друг от друга) или одного территориально распределенного объекта. К таким объектам относятся нефтепроводы, газопроводы, водопроводы, электрораспределительные подстанции, водозаборы, дизель-генераторные пункты и т.д.

Главная задача SCADA-систем – это сбор информации о множестве удаленных объектов, поступающей с пунктов контроля, и отображение этой информации в едином диспетчерском центре. Также, SCADA-система должна обеспечивать долгосрочное архивирование полученных данных. Диспетчер зачастую обладает возможностью не только пассивно наблюдать за объектом, но и им управлять им, реагируя на различные ситуации.

Задачи SCADA-систем:

  • обмен данными с УСО (устройства связи с объектом, то есть с промышленными контроллерами и платами ввода/вывода) в реальном времени через драйверы;
  • обработка информации в реальном времени;
  • отображение информации на экране монитора в понятной для человека форме;
  • ведение базы данных реального времени с технологической информацией;
  • аварийная сигнализация и управление тревожными сообщениями;
  • подготовка и генерирование отчетов о ходе технологического процесса;
  • обеспечение связи с внешними приложениями (СУБД , электронные таблицы, текстовые процессоры и т. д.).

Структура SCADA-систем

Любая SCADA-система включает три компонента: удалённый терминал (RTU – Remote Terminal Unit), диспетчерский пункт управления (MTU – Master Terminal Unit) и коммуникационную систему (CS – Communication System).

Удаленный терминал подключается непосредственно к контролируемому объекту и осуществляет управление в режиме реального времени. Таким терминалом может служить как примитивный датчик, осуществляющий съем информации с объекта, так и специализированный многопроцессорный отказоустойчивый вычислительный комплекс, осуществляющий обработку информации и управление в режиме реального времени.

Диспетчерский пункт управления осуществляет обработку данных и управление высокого уровня, как правило, в режиме квазиреального времени. Он обеспечивает человеко-машинный интерфейс. MTU может быть как одиночным компьютером с дополнительными устройствами подключения к каналам связи, так и большой вычислительной системой или локальной сетью рабочих станций и серверов.

Коммуникационная система необходима для передачи данных с RTU на MTU и обратно. В качестве коммуникационной системы могут использоваться следующие каналы передачи данных: выделенные линии, радиосети, аналоговые телефонные линии, ISDN сети, сотовые сети GSM (GPRS). Зачастую устройства подключаются к нескольким сетям для обеспечения надёжности передачи данных.

Особенности процесса управления в SCADA-системах

  • В системах SCADA обязательно наличие человека (оператора, диспетчера).
  • Любое неправильное воздействие может привести к отказу объекта управления или даже катастрофическим последствиям.
  • Диспетчер несет, как правило, общую ответственность за управление системой, которая, при нормальных условиях, только изредка требует подстройки параметров для достижения оптимального функционирования.
  • Большую часть времени диспетчер пассивно наблюдает за отображаемой информацией. Активное участие диспетчера в процессе управления происходит нечасто, обычно в случае наступления критических событий - отказов, аварийных и нештатных ситуаций и пр.
  • Действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами).

Защита SCADA-систем

Среди некоторых пользователей систем SCADA бытует мнение - если система не подключена к интернету , тем самым она застрахована от кибератак. Эксперты не согласны.

Физическая изоляция бесполезна против атак на SCADA-системы, считает Файзел Лакхани (Faizel Lakhani), эксперт по защите информационных ресурсов. По его мнению, физическая изоляция систем равносильна борьбе с ветряными мельницами .

Большинство SCADA-систем теоретически являются изолированными, однако они все равно не полностью отключены от сети. Кроме того, существуют способы обхода изоляции из-за некорректной настройки систем, наличия тестовых ссылок или потому что кто-то настроил Wi-Fi мост. Системы управления, использующиеся на предприятиях электроэнергетического сектора, создавались без учета безопасности. Они разрабатывались для управления напряжением электрического тока - и это все, что они делают по сей день. Технология SCADA основывалась на устаревших по нынешним меркам протоколах, а системы изначально создавались с возможностью подключения друг к другу, но не к интернету. Однако повсеместно используемый протокол TCP/IP за последние 15 лет добрался и до SCADA-систем. В мире интернета практически все подключено, а значит, не может считаться безопасным.


Файзел Лакхани (Faizel Lakhani), президент компании SS8


Мнения российских экспертов относительно защищенности систем АСУ ТП и SCADA созвучны. Поскольку вопросы безопасности АСУ ТП попали в фокус всеобщего внимания, некоторые производители защитных решений приступили к разработке продуктов, ориентированных на противостояние угрозам для промышленных информационных комплексов (к числу таких продуктов, в частности, может относиться безопасная операционная система - среда для функционирования только доверенных приложений) .

Отдельные компании начали готовить аналитические материалы по этим вопросам, предпринимая попытки оценить состояние АСУ ТП с точки зрения защищенности. Реакция на эти инициативы со стороны специалистов, работающих с промышленными системами, неоднозначна и не всегда одобрительна. Сторонний наблюдатель может сделать вывод: между эксплуатантами

SCADA (аббр. от англ. supervisory control and data acquisition , диспетчерское управление и сбор данных ) - программный пакет, предназначенный для разработки или обеспечения работы в реальном времени систем сбора, обработки, отображения и архивирования информации об объекте (мониторинг), а также возможного контроля и управления данным объектом.

    Функции SCADA

В названии SCADA присутствуют две основные функции, возлагаемые на системы этого класса:

    сбор данных о контролируемом процессе;

    управление технологическим процессом, реализуемое ответственными лицами на основе собранных данных и правил (критериев), выполнение которых обеспечивает наибольшую эффективность технологического процесса.

SCADA-системы обеспечивают выполнение следующих функций:

    Прием информации о контролируемых технологических параметрах от контроллеров нижних уровней и датчиков.

    Сохранение принятой информации в архивах.

    Обработка принятой информации.

    Графическое представление хода технологического процесса, а также принятой и архивной информации в удобной для восприятия форме.

    Прием команд оператора и передача их в адрес контроллеров нижних уровней и исполнительных механизмов.

    Регистрация событий, связанных с контролируемым технологическим процессом и действиями персонала, ответственного за эксплуатацию и обслуживание системы.

    Оповещение эксплуатационного и обслуживающего персонала об обнаруженных аварийных событиях, связанных с контролируемым технологическим процессом и функционированием программно-аппаратных средств АСУТП с регистрацией действий персонала в аварийных ситуациях.

    Формирование сводок и других отчетных документов на основе архивной информации.

    Обмен информацией с автоматизированной системой управления предприятием.

    Непосредственное автоматическое управление технологическим процессом в соответствии с заданными алгоритмами.

  1. Особенности scada как процесса управления

Процесс управления в современных SCADA-системах имеет следующие особенности:

    процесс SCADA применяется в системах, в которых обязательно наличие человека (оператора, диспетчера);

    процесс SCADA был разработан для систем, в которых любое неправильное воздействие может привести к отказу объекта управления или даже катастрофическим последствиям;

    оператор несет, как правило, общую ответственность за управление системой, которая при нормальных условиях только изредка требует подстройки параметров для достижения оптимальной производительности;

    активное участие оператора в процессе управления происходит нечасто и в непредсказуемые моменты времени, обычно в случае наступления критических событий (отказы, нештатные ситуации и пр.);

    действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами).

  1. Основные требования к scada

К SCADA-системам предъявляются следующие основные требования:

    надежность системы;

    безопасность управления;

    открытость, как с точки зрения подключения различного контроллерного оборудования, так и коммуникации с другими программами;

    точность обработки и представления данных, создание богатых возможностей для реализации графического интерфейса;

    простота расширения системы;

    использование новых технологий.

Требования безопасности и надежности управления в SCADA-системах включают:

    никакой единичный отказ оборудования не должен вызвать выдачу ложного выходного воздействия (команды) на объект управления;

    никакая единичная ошибка оператора не должна вызвать выдачу ложного выходного воздействия (команды) на объект управления;

    все операции по управлению должны быть интуитивно- понятными и удобными для оператора (диспетчера).

  1. Основные возможности современных scada

Исходя из требований, которые предъявляются к SCADA-системам, большинству современных пакетов присущи следующие основные возможности:

    Автоматизированная разработка, позволяющая создавать ПО системы автоматизации без реального программирования.

    Средства сбора и хранения первичной информации от устройств нижнего уровня.

    Средства обработки первичной информации.

    Средства управления и регистрации сигналов об аварийных ситуациях.

    Средства хранения информации с возможностью ее постобработки (как правило, реализуется через интерфейсы к наиболее популярным базам данных).

    Средства визуализации информации в виде графиков, гистограмм и т.п.

  1. Структура (архитектура) scada-систем

Все современные SCADA-системы включают три основных структурных компонента (рис.).

Основные структурные компоненты SCADA-системы.

Remote Terminal Unit (RTU ) - удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени.

Системы реального времени бывает двух типов: системы жесткого реального времени и системы мягкого реального времени.

Системы жесткого реального времени не допускают никаких задержек

Спектр воплощения RTU широк - от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Master Terminal Unit (MTU ) - диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого реального времени. Одна из основных функций - обеспечение интерфейса между человеком-оператором и системой. MTU может быть реализован в самом разнообразном виде - от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем и/или объединенных в локальную сеть рабочих станций и серверов.

Communication System (CS ) - коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU.